Resumen del libro
Para desarrollar los contenidos de este libro, hemos tenido muy presentes los objetivos que se querían conseguir. Hemos querido que el estudiante adquiera ciertas habilidades en los significados matemáticos y sus expresiones conjuntas a una situación visual, se familiarice con el rigor matemático y los procesos deductivos del Análisis. Sobre todo, hemos querido que el estudiante sepa en cada momento lo que hace en su estudio y le proponemos que imite inicialmente lo que se hace en situaciones ejemplares, por ello se le propone inmediatamente una práctica después de cada ejemplo o ejercicio. En esta materia conviene hacer para poder entender, pues entender no es fácil. Hemos pensado en un estudiante aislado de un grupo de compañeros, que estudia solo y que tiene que adquirir las nociones básicas y saber utilizarlas. Tratamos que el lector pueda leer y entender enunciados y que establezca relaciones entre los diferentes enunciados. Que pueda establecer resoluciones y demostraciones por similitud con las formas de resolución de los ejemplos y ejercicios. En este sentido una demostración no es más que la resolución de un problema genérico. Esto nos ha hecho presentar algunas demostraciones de propiedades y teoremas como ejercicio resuelto en la sección correspondiente en cada capítulo. Así pues, no se trata de un libro sin demostraciones, sino un libro donde los resultados no son más que situaciones generales de otras tantas prácticas concretas. Nuestra intención es presentar al estudiante una serie de retos teóricos (sin números concretos) y retos prácticos (con números y expresiones concretas) para que el estudiante entienda que los resultados teóricos son fruto de la resolución de algún problema. De esta manera cada uno de los ejercicios resueltos se incorporan al mínimo de resultados presentados claramente como teoría. Esta materia debe aprenderse acumulando la base de conocimiento expuesta tanto definición, proposición, teorema y colorario, como con ejemplos y ejercicios que son presentados como problemas y con su solución. Deben considerarse parte de conocimientos teóricos aquellos ejemplos y ejercicios que son rotulados con un título en letra negrita. Se ha optado por esta forma de añadir resultados teóricos para facilitar el estudio de la materia.
Los contenidos de este libro se inician con una introducción axiomática de los fundamentos de los números reales, la construcción de un modelo de esos números y la recta real en el primer capítulo. En el capítulo segundo se continúa con el estudio de las sucesiones mostradas en el primer capítulo cuando cada término es un número real. En el capítulo tercero se trata un caso particular de sucesión; el concepto de serie numérica.
El texto continúa con el concepto de variable y el de función haciendo referencia a las propiedades algebraicas del conjunto de funciones reales de variable real. La estructura de espacio vectorial emerge como el soporte donde los problemas tienen sentido. Operar funciones de diversos tipos, bien funciones continuas o bien derivables, pues las funciones elementales son pocas pero se pueden combinar para obtener un vasto cuerpo de nuevas funciones.
El estudiante está familiarizado con los contenidos de los tres últimos capítulos, bien por sus estudios de Bachillerato o bien por el Curso de Acceso a la Universidad, y por tanto no tiene que resultarle extraña una parte de los resultados expuestos. Hemos querido aportar el significado correspondiente a cada algorítmica empleada en cada momento. En la medida de lo posible se ha intentado hacer una interpretación geométrica de la cuestión añadiendo una gráfica aclaratoria. Intentamos que el estudiante entienda la importancia que tiene el aprender la materia de una forma precisa entendiendo las demostraciones y las resoluciones de los ejercicios. Estas demostraciones y esas soluciones deben servir de camino a seguir cuando el estudiante intente describir la resolución de una situación problemática. Determinar la solución es importante pero saber comunicar correctamente esa solución es esencial en esta materia.